An ensemble of transliteration models for information retrieval
نویسندگان
چکیده
Transliteration is used to phonetically translate proper names and technical terms especially from languages in Roman alphabets to languages in non-Roman alphabets such as from English to Korean, Japanese, and Chinese. Because transliterations are usually representative index terms for documents, proper handling of the transliterations is important for an effective information retrieval system. However, there are limitations on handling transliterations depending on dictionary lookup, because transliterations are usually not registered in the dictionary. For this reason, many researchers have been trying to overcome the problem using machine transliteration. In this paper, we propose a method for improving machine transliteration using an ensemble of three different transliteration models. Because one transliteration model alone has limitation on reflecting all possible transliteration behaviors, several transliteration models should be complementary used in order to achieve a high-performance machine transliteration system. This paper describes a method about transliteration production using the several machine transliteration models and transliteration ranking with web data and relevance scores given by each transliteration model. We report evaluation results for our ensemble transliteration model and experimental results for its impact on IR effectiveness. Machine transliteration tests on English-to-Korean transliteration and Englishto-Japanese transliteration show that our proposed method achieves 78–80% word accuracy. Information retrieval tests on KTSET and NTCIR-1 test collection show that our transliteration model can improve the performance of an information retrieval system about 10–34%. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
An Ensemble of Grapheme and Phoneme for Machine Transliteration
Machine transliteration is an automatic method to generate characters or words in one alphabetical system for the corresponding characters in another alphabetical system. There has been increasing concern on machine transliteration as an assistant of machine translation and information retrieval. Three machine transliteration models, including “grapheme-based model”, “phonemebased model”, and “...
متن کاملApplying a Dynamic Bayesian Network Framework to Transliteration Identification
Identification of transliterations is aimed at enriching multilingual lexicons and improving performance in various Natural Language Processing (NLP) applications including Cross Language Information Retrieval (CLIR) and Machine Translation (MT). This paper describes work aimed at using the widely applied graphical models approach of ‘Dynamic Bayesian Networks (DBNs) to transliteration identifi...
متن کاملA Comparison of Different Machine Transliteration Models
Machine transliteration is a method for automatically converting words in one language into phonetically equivalent ones in another language. Machine transliteration plays an important role in natural language applications such as information retrieval and machine translation, especially for handling proper nouns and technical terms. Four machine transliteration models – grapheme-based translit...
متن کاملارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبهبندی در بازیابی اطلاعات
Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...
متن کاملMachine Learning Based English-to-Korean Transliteration Using Grapheme and Phoneme Information
Machine transliteration is an automatic method to generate characters or words in one alphabetical system for the corresponding characters in another alphabetical system. Machine transliteration can play an important role in natural language application such as information retrieval and machine translation, especially for handling proper nouns and technical terms. The previous works focus on ei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Process. Manage.
دوره 42 شماره
صفحات -
تاریخ انتشار 2006